## Frogwell

Primary School \& Complex Needs Resource Base

## MULTIPLICATION

## Vocabulary and Stem sentences <br> double, repeated addition, times, multiplied by, the product of, groups of, lots of, equal groups, array, multiple <br> $\qquad$ <br> $\qquad$ <br> $\qquad$ <br> There are groups <br> There are in each group <br> $5 \times 3=5$ multiplied 3 times or 3 lots of 5 <br> There are altogether

| Objective | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| EYFS <br> ELG: Number <br> Automatically recall number bonds (+) up to 5 and some number bonds to 10 , including double facts. <br> (link to halving) <br> ELG: Numerical Patterns <br> Explore and represent patterns within numbers up to 10 , including evens and odds, double facts ... | Children should explore different ways to build doubles using real objects and practical equipment | Eg. Children draw circles to represent the objects | $" 1+1=2 "$ <br> "Double 1 is $2 "$ $" 2+2=4 "$ <br> "Double 2 is $4 "$ |


| Objective | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Year 1 Multiplication (Y) ) solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. <br> Non statutory guidance Through grouping and sharing small quantities, pupils begin to understand: multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities. They make connections between arrays, number patterns, and counting in twos, fives and tens. | Use concrete resources to explore doubling |  | There are _ groups. <br> There are $\qquad$ in each group. There are $\qquad$ altogether. $4+4+4=12$ <br> Introduce repeated addition $1+1=2$ <br> "Double 1 is $2 " . .$. |
| Objective | Make equal grouns using different resources. | Pictorial | Use repeated additition to represent the |
| Year 2 Multiplication (Y2) calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication ( $x$ ), division $(\div)$ and equals ( $=$ ) signs. | Make equal groups using different resources. | Draw pictures to represent problems. | Use repeated addition to represent the calculation. $5+5+5+5=20$ <br> Introduce the multiplication symbol. $\underline{5} \times 4=20$ |


| (Y2) solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. | Represent multiplication problems using concrete resources. <br> There are 3 baskets. <br> There are 5 apples in each basket. <br> How many apples altogether? 5X3 | Begin to use Bar Models to represent multiplication statements. <br> Draw jumps on a number line to count multiples. | Ensure that children have a secure understanding of what each number represents in the equation. $5 \times 3=15$ <br> 3 lots of $5=15$ <br> 5 multiplied by $3=15$ |
| :---: | :---: | :---: | :---: |
| Objective | Concrete | Pictorial | Abstract |
| (Y2) show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot | Use arrays to show that 2X5 is the same as 5X2 <br> Use counters, cubes and Numicon to show commutativity. | representations of arrays to show different calculations and explore commutativity. | $5 \times 2=2 \times 5$ |




|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  | $\begin{aligned} & 3 \cdot 19 \\ & \frac{x 8}{x} \frac{8}{5 \cdot 5 \cdot 52} \\ & 21 \end{aligned}$ |

## DIVISION

## Vocabulary and Stem sentences

share, group, divide, divided by, half. (KS1)
quotient, dividend, divisor, divisible by, divisibility (KS2)
There are $\qquad$ altogether $\qquad$ shared between $\qquad$ is $\qquad$ in
There is $\qquad$ in each group
There are $\qquad$ groups (grouping)
each group (sharing)


| Objective | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Year 1 Division <br> (Yl) solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. <br> Non statutory guidance Through grouping and sharing small quantities, pupils begin to understand: multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities. | Division as sharing. Use different concrete resources. 6 shared between $2=3$. Link with halving. <br> Division as grouping. Use concrete resources to make equal groups. |  | 6 shared between 2 is 3 in each group <br> There are 12 altogether There is 2 in each group There are 6 groups |
| Objective | Concrete | Pictorial | Abstract |
| Year 2 Division <br> calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication ( $\times$ ), division ( $\div$ ) and equals (=) signs. <br> solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. | Divide by sharing into equal groups. Share 12 counters between 3 boxes. | Draw bar models to share 12 between 3 groups. | $\qquad$ has been shared equally into $\qquad$ equal groups. <br> I have $\qquad$ in each group. <br> Division symbol is introduced to children. $12 \div 3=4$ |

## Year 2 Division

## Year 3 Division

write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.

Divide a two-digit number by a one digit number.

Use place value counters to share a two digit number.

$$
66 \div 3=
$$

$\qquad$ -


Use Numicon or Cuisenaire rods on a ruler to show equal groups. Bead strings can also be used to make equal groups.


Draw representations of dienes or place value counters and share into equal groups.
$66 \div 3=21$

$$
66 \div 3=21
$$

| 10 s | Is |
| :---: | :---: |
| (10) | (1) |

(10)

Draw equal jumps on a number line. How many 4s in 13?
Introduce remainders.


Use a bar model to show how number of groups.


|  |  |  | $\frac{1 \sqrt{2}}{7}$ |
| :---: | :---: | :---: | :---: |
|  |  | companam |  |
| Venta | 1005 105 15 <br> 08   <br> 0   | 100010.16 |  |
| in the formal written method of short multiplication and short division with exact answers (see | ¿® 20000000 |  | $\frac{125}{6} 1^{2} 5$ |
|  | cists | 112 |  |
|  | 2umemix |  |  |
|  |  |  |  |

## Year 5 Division

divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
multiply and divide whole numbers and those involving decimals by 10,100 and 1000

## Year 6 Division

divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.
divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

## Short division

$98 \div 7$ becomes


Answer: 14
$432 \div 5$ becomes


Answer: 86 remainder 2
$496 \div 11$ becomes


Answer: $45 \frac{1}{11}$

Answers should be expressed as remainders, tractions, decimals or by rounding to sult the context.

## Long division

$$
432 \div 15 \text { becomes }
$$

Answer: 28 remainder 12
$432 \div 15$ becomes

$$
1 \begin{array}{llll} 
& & 2 & 8 \\
\hline
\end{array} \begin{array}{lll} 
& & \\
\hline
\end{array}
$$

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes
$\begin{array}{lllll} & & & 2 & 8 \\ 1 & 5 & 4 & 3 & 2\end{array} 0$

| 3 | 0 | $\downarrow$ |  |
| :---: | :---: | :---: | :---: |
| 1 | 3 | 2 |  |
| 1 | 2 | 0 | $\downarrow$ |
|  | 1 | 2 | 0 |
|  | 1 | 2 | 0 |
|  |  | 0 |  |

Answer: 28.8

